Part Number Hot Search : 
0805C HMC136 LVIR333 CHIMB9PT 2SC2098 LS7636FO TY16N80E IRFM3205
Product Description
Full Text Search
 

To Download MIC3202YME Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mic3202/mic3202-1 high-brightness led driver with integrated mosfet and high-side current sense 944-0800 ? fax + 1 (408) 474-1000 ? http://www.micrel.com micrel inc. ? 2180 fortune drive ? san jose, ca 95131 ? usa ? tel +1 (408) septembe m9999-091710-a r 2010 general description the mic3202 is a hysteretic, step-down, constant-current, high-brightness led (hb led) driver. it provides an ideal solution for interior/exterio r lighting, architectural and ambient lighting, led bulbs, and other general illumination applications. the mic3202 is well suited for lighting applications requiring a wide-input voltage ra nge. the hysteretic control gives good supply rejection and fast response during load transients and pwm dimming. the high-side current sensing and on-chip current-sense amplifier delivers led current with 5% accuracy. an exter nal high-side current- sense resistor is used to set the output current. the mic3202 offers a dedicated pwm input (dim) which enables a wide range of pulsed dimming. high-frequency switching operation of up to 1mhz allows the use of smaller external components, minimizing space and cost. the mic3202 offers a frequency dither feature for low-emi applications. the mic3202 operates over a junction temperature from ? 40 c to + 125 c and is available in an 8-pin e-pad soic package. a dither disabled version mic3202-1 is also available in the same package as the mic3202. datasheets and support documentation can be found on micrel?s web site at: www.micrel.com . features ? 6v to 37v input voltage range ? high efficiency ( > 90%) ? 5% led current accuracy ? mic3202: dither enabled for low emi ? mic3202-1: dither disabled ? high-side current sense (up to 1a) ? dedicated dimming control input ? hysteretic control (no compensation required) ? up to 1mhz switching frequency ? adjustable constant led current ? over-temperature protection ? ? 40 c to + 125 c junction temperature range applications ? architectural, industrial, and ambient lighting ? led bulbs ? indicators and emergency lighting ? street lighting ? channel letters ? 12v lighting systems (mr-16 bulbs, under-cabinet lighting, garden/pathway lighting) _________________________________________________________________________________________________________________________ typical application mic3202 step-down led driver efficiency vs. input voltage 80 85 90 95 100 6 14223038 input voltage (v) efficiency (%) i led = 1a l = 47uh 8led 6led 4led 2led
micrel, inc. mic3202/mic3202-1 september 2010 2 m9999-091710-a ordering information (1) part number marking junction temperature range package pwm MIC3202YME MIC3202YME ? 40c to + 125c 8-pin soic dither mic3202-1yme mic3202-1yme ? 40c to + 125c 8-pin soic non-dither note: 1. ym ? is a green rohs-compliant package. lead finish is nipdau. mold compound is halogen free. pin configuration 8-pin epad soic mic3202/mic3202-1 pin description pin number pin name pin function 1 vcc voltage regulator output. the vcc pin supplies the powe r to the internal circuitry. the vcc is the output of a linear regulator which is powered from vin. a 1f ceramic capacitor is recommended for bypassing and should be placed as close as possible to the vcc and agnd pins. 2 cs current-sense input. the cs pin provides the high-side current sense to set the led current using an external sense resistor. 3 vin input power supply. the vin pin is the input supply pin to the internal circuitry and the positive input to the current sense comparator. due to the high fr equency switching noise, a 1f ceramic capacitor is recommended to be placed as close as possible to vin pin and the power ground (pgnd) pin for bypassing. please refer to layout recommendations. 4 agnd ground pin for analog circuitry. internal signal ground for all low power sections. 5 en enable input. the en pin provides a logic level contro l of the output. the voltage has to be 2.0v or higher to enable the current regulator. the output stage is also gated by the dim input. when the en pin is pulled low, the regulator goes to off state and the s upply current of the device is greatly reduced (below 1a). 6 dim pwm dimming input. the dim pin provides the contro l for brightness of the led. a pwm input can be used to control the brightness of le d. dim high enables the output and it s voltage has to be at least 2.0v or higher. dim low disables the output, regardless of en ?high? state. 7 pgnd power ground pin for internal power fet. power gr ound (pgnd) is the ground path for the high current. the current loop for the power ground should be as small as possible and separate from the analog ground (agnd) loop. refer to the lay out considerations for more details. 8 lx drain of internal power mosfet. the lx pin connects directly to the inductor and provides the switching current necessary to operate in hysteretic mode. due to the high frequency switching and high voltage associated with this pin, the switch node s hould be routed away from sensitive nodes. ep gnd connect to pgnd.
micrel, inc. mic3202 september 2010 3 m9999-091710-a absolute maximum ratings (1, 2) v in to pgnd .................................................. ? 0.3v to + 42v v lx to pgnd........................................ ? 0.3v to (v in + 0.6v) v cs to pgnd ....................................... ? 0.3v to (v in + 0.3v) v en to agnd ....................................... ? 0.3v to (v in + 0.3v) v dim to agnd ...................................... ? 0.3v to (v in + 0.3v) v cc to pgnd ................................................ ? 0.3v to + 6.0v pgnd to agnd .......................................... ? 0.3v to + 0.3v junction temperature ................................................ 150 c storage temperat ure range .................... ? 60c to + 150 c lead temperature (sol dering, 10s ec) ....................... 260 c operating ratings (3) supply voltage (v in ).......................................... 6.0v to 37v enable voltage (v en) .............................................. 0v to v in dimming voltage (v dim ) ................................................................. 0v to v in junction temperature (t j ) ........................ ? 40 c to + 125 c junction thermal resistance soic ( ja ) ..........................................................41 c/w soic ( jc ).......................................................14.7 c/w electrical characteristics (4) v in = v en = v dim = 12v; c vcc = 1.0f; t j = 25 c, bold values indicate ? 40c t j + 125 c; unless noted. symbol parameter condition min. typ. max. units input supply v in input voltage range (v in ) 6.0 37.0 v i s supply current lx pin = open 1.2 1.75 ma i sd shut down current v en = 0v; t j = from -40oc to 85oc 0.05 5 a uvlo v in uvlo threshold v in rinsing 3.2 4 4.5 v uvlo hys v in uvlo hysteresis 500 mv vcc supply vcc v cc output voltage v cs = v in = 12v, i cc = 10ma 4.5 5 5.5 v current limit v cs(max) current-sense upper threshold v cs(max ) = v in ? v cs 199 212 225 mv v cs(min) current-sense lower threshold v cs(min ) = v in ? v cs 165 177 189 mv v cs hysteresis 35 mv v cs rising 60 current-sense response time v cs falling 40 ns v cshys current-sense input current v in - v cs = 200mv 3 a frequency f max maximum switching frequency 1 mhz dithering (mic3202) v dith v cs hysteresis dithering range (5) 6 mv f dither frequency dithering range (5) % of switching frequency 12 % enable input en hi en logic level high 2.0 v en logic level low 0.4 v v en = 12v 30 60 en bias current v en = 0v 0.1 1 a en lo start-up time from en pin going high to lx going low 30 s
micrel, inc. mic3202 september 2010 4 m9999-091710-a electrical characteristics (4) v in = v en = v dim = 12v; c vcc = 1.0f; t j = 25 c, bold values indicate ? 40 c t j + 125 c; unless noted. symbol parameter condition min. typ. max. units dimming input dim hi dim logic level high 2.0 v dim logic level low 0.4 v v dim = 12v 20 35 dim lo dim bias current v dim = 0v 0.1 1 a f dim maximum dimming frequency 20 khz internal mosfet mosfet r ds(on) i lx = 200ma 275 625 m? r ds(on) lx leakage current v en = 0v; v in = v lx = 37v 5 50 a thermal protection t lim over-temperature shutdown t j rising 160 t limhys over-temperature shutdown hysteresis 20 c notes: 1. exceeding the absolute maximum rating may damage the device. 2. devices are esd sensitive. handli ng precautions recommended. human body mo del, 1.5k in series with 100pf. 3. the device is not guaranteed to function outside its operating rating. 4. specification for packaged product only. 5. guaranteed by design.
micrel, inc. mic3202 typical characteristics efficiency vs. input voltage 75 80 85 90 95 100 6 14223038 input voltage (v) efficiency (%) i led = 1a l = 47uh 1led 8led 6led 4led 2led led current normalized vs. input voltage 0.98 0.99 1.00 1.01 1.02 6 14223038 input voltage (v) led current norm (a) i led = 1a l = 47uh 1led 8led 6led 4led 2led led current accuracy vs. input voltage -2.0% -1.0% 0.0% 1.0% 2.0% 6 14223038 input voltage (v) led current (%) i led = 1a l = 47uh 1led 8led 6led 4led 2led switching frequency vs. input voltage 0 250 500 750 1000 614223038 input voltage (v) switching frequency (khz) i led = 1a l = 47uh 1led 2led 4led 6led 8led duty cycle vs. input voltage 0% 25% 50% 75% 100% 6 14223038 input voltage (v) duty cycle (%) 1led 2led 4led 6led 8led i led = 1a l = 47uh v in supply current vs. input voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 6 14223038 input voltage (v) supply current (ma) v out = open v cc = 5v no-switching v in shutdown current vs. input voltage 0.0 0.1 0.2 0.3 0.4 0.5 614223038 input voltage (v) shutdown current (a) v en = 0v v cc voltage vs. input voltage 4.950 4.975 5.000 5.025 5.050 6 14223038 input voltage (v) v cc voltage (v) v led = open i led = 0a cs voltage vs. input voltage 150 175 200 225 250 6 14223038 input voltage (v) cs voltage (mv) v cs max v cs min v led =3.5v i led =1a enable bias current vs. enable voltage 0 25 50 75 100 125 6 14223038 enable voltage (v) enable bias current (a) v in = v en v led =open i led = 0a dimming bias current vs. dimming voltage 0 25 50 75 100 6 14223038 dimming voltage (v) dimming bias current (a) v in = v dim v led =open i led = 0a switch r dson vs. input voltage 225 275 325 375 425 6 14223038 input voltage (v) switch r dson (m ? ) v led = 3.5v i led = 1a september 2010 5 m9999-091710-a
micrel, inc. mic3202 typical characteristics (continued)` v in supply current vs. temperature 0.0 0.5 1.0 1.5 2.0 -50 -20 10 40 70 100 130 temperature (c) v in supply current (ma) v in =v in = 12v v led = open i led = 0a shutdown current vs. temperature 0 0.1 0.2 0.3 0.4 -50 -20 10 40 70 100 130 temperature (c) shutdown current (a) v in = 12v v en = 0v v in uvlo threshold vs. temperature 3.0 3.5 4.0 4.5 -50 -20 10 40 70 100 130 temperature (c) v in uvlo threshold (v) rising falling v in = 12v v led = 3.5v i led = 1a l = 47uh switching frequency vs. temperature 300 310 320 330 340 -50 -20 10 40 70 100 130 temperature (c) switching frequency (khz) v in = 12v v led = 3.5v i led = 1a l = 47uh enable bias current vs. temperature 20 25 30 35 40 -50 -20 10 40 70 100 130 temperature (c) enable bias current (a) v in =v en = 12v v led = open i led = 0a v cc voltage vs. temperature 4.80 4.90 5.00 5.10 5.20 -50 -20 10 40 70 100 130 temperature (c) v cc voltage (v) v in = 12v v led = open i led = 0a cs voltage vs. temperature 150 175 200 225 250 -50 -20 10 40 70 100 130 temperature (c) cs voltage (mv) v in = 12v v led = 3.5v i led = 1a l = 47uh v cs max v cs min switch r dson vs. temperature 200 250 300 350 400 450 -50 -20 10 40 70 100 130 temperature (c) switch r dson ( ? ) v in = 12v i sw = 0.2a case temperature vs. input voltage 20 30 40 50 6 14223038 input voltage (v) case temperature (o c) v led = 3.5v i led = 1a l = 47uh 1oz/3.5 sq inch switch voltage vs. switch current 0 50 100 150 200 250 300 0.0 0.3 0.5 0.8 1.0 switch current (a) switch voltage (mv) v led = 3.5v v in = 12v switch r dson vs. switch current 270 275 280 285 290 0.0 0.3 0.5 0.8 1.0 switch current (a) switch r dson (m ? ) v led = 3.5v v in = 12v switch voltage vs. switch current 0 50 100 150 200 250 300 0.0 0.3 0.5 0.8 1.0 switch current (a) switch voltage (mv) v led = 3.5v v in = 12v september 2010 6 m9999-091710-a
micrel, inc. mic3202 september 2010 7 m9999-091710-a functional characteristics
micrel, inc. mic3202 functional characteristics (continued) september 2010 8 m9999-091710-a
micrel, inc. mic3202 september 2010 9 m9999-091710-a functional diagram figure 1. mic3202/mic3202-1 functional block diagram functional description the mic3202 is a hysteretic step-down driver which regulates the led current over wide input voltage range and capable of driving up to eight 1a leds in series. the device operates from a 6v to 37v input. when the input voltage reaches 6v, the internal 5v vcc is regulated and the lx pin is pulled low if the en pin and dim pin are high. the inductor current builds up linearly. when the cs pin voltage hits v cs(max) with respect to v in , the mosfet turns off and the schottky diode takes over and returns the current to v in . then the current through inductor and leds starts dec reasing. when cs pin hits v cs(min) , the mosfet turns on and the cycle repeats. the frequency of operation depends upon the input voltage, total led voltage drop, led current and temperature. the calculation for frequency of operation is given in the application information section. the mic3202 has an en pin wh ich gives the flexibility to enable and disable the output with logic high and low signals. the mic3202 also has a dim pin which can turn on and off the leds if en is in high st ate. this dim pin controls the brightness of the led by vary ing the duty cycle of dim pin from 1% to 99%.
micrel, inc. mic3202 september 2010 10 m9999-091710-a application information the internal block diagram of the mic3202 is shown in figure 1. the mic3202 is composed of a current-sense comparator, voltage and current reference, 5v regulator and mosfet. hysteretic mode control, also called bang-bang control, is a topology that does not employ an error amplifier, using an error comparator instead. the inductor current is cont rolled within a hysteretic window. if the inductor current is too small, the power mosfet is turned on; if the inductor current is large enough, the power mosfet is turned off. it is a simple control scheme with no oscillator and no loop compensation. since the control scheme does not need loop compensation, it simplifies design and avoids problems of instability. transient response to load and line variation is very fast and only depends on propagation delay. this makes the control scheme very popular to achieve low dimming duty cycles. led current and r cs the main function of the mic3202 is to control the led current accurately within 5% of the set current. a high- side r cs resistor sets led current. the following equation gives the r cs value: ) i v+v (x 2 1 =r led )min(cs)max(cs cs r cs ( ? ) i led (a) i 2 r (w) size (smd) 1.33 0.15 0.03 0603 0.56 0.35 0.07 0805 0.4 0.5 0.1 0805 0.28 0.7 0.137 0805 0.2 1.0 0.2 1206 table 1. r cs values for various led currents for v cs(max) and v cs(min), refer to the electrical characteristic table. frequency of operation to calculate the frequency spread across input supply: t ? i ? l=v l l l is the inductance, i l is fixed (the value of the hysteresis): cs )min(cs)max(cs l r v v =i ? - v l is the voltage across inductor l which varies by supply. for current rising (mosfet is on): rise_l l r v i ? l=t where: v l_rise = v in ? i led r cs ? v led . for current falling (mosfet is off): fall_l l f v i ? l=t where: v l_fall = v d + i led r cs + v led fr t+t=t , t 1 f sw = ) in v d (v l ? il ) led v- cs r led i- in (v) led v cs r led i d (v f sw + ++ = where: v d is schottky diode forward drop. v led is total leds voltage drop. v in is input voltage. i led is average led current.
micrel, inc. mic3202 september 2010 11 m9999-091710-a inductor according to the above equation, choose the inductor to make the operating frequency no higher than 1.0mhz. tables 2, 3, and 4 give a reference inductor value and corresponding frequency for a given led current. for space-sensitive applications, smaller inductor with higher switching frequency could be used but the efficiency of the regular will be reduced. rcs ( ? ) i led (a) l (h) f sw (khz) 1.33 0.15 220 474 0.56 0.35 100 439 0.4 0.5 68 461 0.28 0.7 47 467 0.2 1.0 33 475 table 2. inductor for v in = 12v, 1 led rcs ( ? ) i led (a) l (h) f sw (khz) 1.33 0.15 470 474 0.56 0.35 220 426 0.4 0.5 150 447 0.28 0.7 100 470 0.2 1.0 68 493 table 3. inductor for v in = 24v, 4 leds rcs ( ? ) i led (a) l (h) f sw (khz) 1.33 0.15 470 495 0.56 0.35 220 446 0.4 0.5 150 467 0.28 0.7 100 490 0.2 1.0 68 515 table 4. inductor for v in = 36v, 8 leds given an inductor value, the size of the inductor can be determined by its rms and peak current rating. 18.0= v+v 2= i i )min(cs)max(cs )min(cs)max(cs l l v v - l 2 l 2 l)rms(l i i 12 1 +i=i l l l)pk(l i09.1=i 2 1 +i=i where: i l is inductor average current. select an inductor with saturation current rating at least 30% higher than the peak current. free-wheeling diode the free-wheeling diode should have the reverse voltage rating to accommodate the maximum input voltage. the forward voltage drop should be small to get the lowest conduction dissipation for high efficiency. the forward current rating has to be at least equal to led current. a schottky diode is recommended for highest efficiency. input capacitor the ceramic input capacitor is selected by voltage rating and ripple current rating. to determine the input current ripple rating, the rms value of the input capacitor can be found by: d)-(1d led cin(rms) ii u u the power loss in the input capacitor is: esr in cin(rms) 2 loss(cin) c i p u the input capacitor current rating can be considered as i led /2 under the worst condition d = 50%. led ripple current the led current is the same as inductor current. if led ripple current needs to be reduced then place a 4.7f/50v ceramic capacitor across led. frequency dithering the mic3202 is designed to reduce emi by dithering the switching frequency r 12% in order to spread the noise spectrum over a wider range. this lowers the emi noise peaks generated by the switching regulator. switching regulators generate noise by their nature and they are the main emi source to interference with nearby circuits. if the switching frequency of a regulator is modulated via frequency dithering, the energy of the emi is spread among many frequencies instead of concentrated at fundamental switching frequency and its harmonics. the mic3202 modulates the v cs(max) with amplitude r 6mv by a pseudo random generator to generate the r 12% of the switching frequency dithering to reduce the emi noise peaks.
micrel, inc. mic3202 september 2010 12 m9999-091710-a pcb layout guidelines warning!!! to minimize emi and output noise, follow these layout recommendations. pcb layout is critical to achieve reliable, stable and efficient performance. a ground plane is required to control emi and minimize the inductance in power, signal and return paths. the following guidelines should be followed to insure proper operation of the mic3202 regulator. ic use thick traces to route the input and output power lines. signal and power grounds should be kept separate and connected at only one location. input capacitor place the input capacitors on the same side of the board and as close to the ic as possible. keep both the vin and pgnd traces as short as possible. place several vias to the ground plane close to the input capacitor ground terminal, but not between the input capacitors and ic pins. use either x7r or x5r dielectric input capacitors. do not use y5v or z5u type capacitors. do not replace the ceramic input capacitor with any other type of capacitor. any type of capacitor can be placed in parallel with the input capacitor. if a tantalum input capacitor is placed in parallel with the input capacitor, it must be recommended for switching regulator applications and the operating voltage must be derated by 50%. in ?hot-plug? applications, a tantalum or electrolytic bypass capacitor must be placed in parallel to ceramic capacitor to limit the over-voltage spike seen on the input supply with power is suddenly applied. in this case an additional tantalum or electrolytic bypass input capacitor of 22f or higher is required at the input power connection if necessary. inductor keep the inductor connection to the switch node (lx pin) short. do not route any digital line s underneath or close to the inductor. to minimize noise, place a ground plane underneath the inductor. output capacitor if led ripple current needs to be reduced then place a 4.7f/50v capacitor across led. the capacitor must be placed as close to the led as possible. diode place the schottky diode on the same side of the board as the ic and input capacitor. the connection from the schottky diode?s anode to the switching node must be as short as possible. the diode?s cathode connection to the r cs must be keep as short as possible. rc snubber place the rc snubber on the same side of the board and as close to the schottky diode as possible. also the snubber closest to lx pin and pgnd pin. r cs (current-sense resistor) make a kelvin connection to the vin and cs pins respectively for current sensing. trace routing recommendation keep the power traces as short and wide as possible. one current flowing loop is during the internal mosfet on time, the traces connecting the input capacitor c in , r cs , leds, inductor, the lx pin, pgnd and back to c in . the other current flowing loop is during the internal mosfet off time, the traces connecting r cs , led, inductor, free wheeling diode and back to r cs . these two loop areas should kept as small as possible to minimize the noise interference, keep all analog signal traces away from the switching node and its connecting traces.
micrel, inc. mic3202 september 2010 13 m9999-091710-a ripple measurements to properly measure ripple on either input or output of a switching regulator, a proper ring in tip measurement is required. standard oscilloscope probes come with a grounding clip, or a long wire with an alligator clip. unfortunately, for high-frequency measurements, this ground clip can pick-up high-frequency noise and erroneously inject it into the measured output ripple. the standard evaluation board accommodates a home made version by providing probe points for both the input and output supplies and their respective grounds. this requires the removing of the oscilloscope probe sheath and ground clip fr om a standard oscilloscope probe and wrapping a non-shielded bus wire around the oscilloscope probe. if there does not happen to be any non-shielded bus wire immediately available, the leads from axial resistors will work. by maintaining the shortest possible ground lengths on the oscilloscope probe, true ripple measurements can be obtained. figure 2. low-noise measurement
micrel, inc. mic3202 september 2010 14 m9999-091710-a evaluation board schematic figure 3. mic3202 application circuit (r9 is for test purposes only)
micrel, inc. mic3202 september 2010 15 m9999-091710-a bill of materials item part number manufacturer description qty. 12105c475kaz2a avx (1) c1, c2, c8 grm32er71h475ka88l murata (2) 4.7f/50v, ceramic capacitor, x7r, size 1210 2 08053d105kat2a avx (1) 1f/25v, ceramic capacitor, x5r, size 0805 1 grm21br71e105ka99l murata (2) c3, c9 c2012x7r1e105k tdk (3) 1f/25v, ceramic capacitor, x7r, size 0805 1 06035c271kat2a avx (1) c4, c7 grm188r71h271ka01d murata (2) 270pf/50v, ceramic capacitor npo, size 0603 2 06035c104mat avx (1) grm188r71h104ka93d murata (2) c5, c6 c1608x7r1h104k tdk (3) 0.1f/50v, ceramic capacitor, x7r, size 0603 2 ss24-tp mcc (4) d1 ss24 fairchild (5) 60v, 2a, sma, schottky diode 1 d2, d3 b0530ws-tp mcc (4) 30v, 200ma, schottky diode, sod-323 2 l1 slf10145t-470m1r4 tdk (3) 47h, 1.4a, smt, power inductor 1 r1 csr 1/2 0.2 1% i stackpole electronics, inc (7) 0.2 ? resistor, 1/2w, 1%, size 1206 1 r2, r3 crcw06031003fkea vishay (8) 100k ? resistor, 1%, size 0603 2 r4 crcw08052r20fkea vishay (8) 2.2 ? resistor, 1%, size 0805 1 r5 crcw080510r0fkea vishay (8) 10? resistor, 1%, size 0805 1 r6 crcw060310k0fkea vishay (8) 10k ? resistor, 1%, size 0603 1 r7, r8 crcw06030000fkea vishay (8) 0 ? resistor, 1%, size 0603 2 r9 crcw060349r9fkea vishay (8) 49.9 ? resistor, 1%, size 0603 1 rv1 3386p-1-104tlf bourns (9) pot 100k ? 3/8" sq cerm sl st 1 u1 mic3202ym micrel, inc. (10) high brightness led driver with high-side current sense 1 u2 mic1557ym5 micrel, inc. (10) rc time/oscillator (sot-23-5) 1 notes: 1. avx: www.avx.com . 2. murata: www.murata.com . 3. tdk: www.tdk.com . 4. mcc: www.mccsemi.com . 5. fairchild: www.fairchildsemi.com . 6. diodes inc. : www.diodes.com . 7. stackpole electronics: www.seielect.com . 8. vishay: www.vishay.com . 9. bourns inc : www.bourns.com . 10. micrel, inc.: www.micrel.com .
micrel, inc. mic3202 september 2010 16 m9999-091710-a pcb layout recommendation top assembly top layer
micrel, inc. mic3202 september 2010 17 m9999-091710-a pcb layout recommen dation (continued) bottom layer
micrel, inc. mic3202 september 2010 18 m9999-091710-a package information 8-pin epad soic (me)
micrel, inc. mic3202 september 2010 19 m9999-091710-a recommended landing pattern 8-pin epad soic (me) micrel, inc. 2180 fortune drive san jose, ca 95131 usa tel +1 (408) 944-0800 fax +1 (408) 474-1000 web http://www.micrel.com micrel makes no representations or warranties with respect to th e accuracy or completeness of t he information furnished in this data sheet. this information is not intended as a warranty and micrel does not assume responsibility for it s use. micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. no license, whether express, implied, arising by estoppel or otherwise, to any in tellectual property rights is granted by this document. except as provided in micrel?s term s and conditions of sale for such products, micrel assumes no lia bility whatsoever, and micrel disclaims any express or implied warranty relating to t he sale and/or use of micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of an y patent, copyright or other intellectual property right micrel products are not designed or author ized for use as components in life support app liances, devices or systems where malfu nction of a product can reasonably be expected to result in personal injury. life support devices or systems ar e devices or systems that (a) are intend ed for surgical implant into the body or (b) support or sustain life, and whose failure to per form can be reasonably expected to result in a significant inj ury to the user. a purchaser?s use or sale of micrel products for use in life support appliances, devices or systems is a purchaser?s own risk and purchaser a grees to fully indemnify micrel for any damages resulting from such use or sale. ? 2010 micrel, incorporated.


▲Up To Search▲   

 
Price & Availability of MIC3202YME

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X